11,393 research outputs found

    Paradoxical effect of rapamycin on inflammatory stress-induced insulin resistance in vitro and in vivo

    Get PDF
    Insulin resistance is closely related to inflammatory stress and the mammalian target of rapamycin/S6 kinase (mTOR/S6K) pathway. The present study investigated whether rapamycin, a specific inhibitor of mTOR, ameliorates inflammatory stress-induced insulin resistance in vitro and in vivo. We used tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6) stimulation in HepG2 hepatocytes, C2C12 myoblasts and 3T3-L1 adipocytes and casein injection in C57BL/6J mice to induce inflammatory stress. Our results showed that inflammatory stress impairs insulin signaling by reducing the expression of total IRS-1, p-IRS-1 (tyr632), and p-AKT (ser473); it also activates the mTOR/S6K signaling pathway both in vitro and in vivo. In vitro, rapamycin treatment reversed inflammatory cytokine-stimulated IRS-1 serine phosphorylation, increased insulin signaling to AKT and enhanced glucose utilization. In vivo, rapamycin treatment also ameliorated the impaired insulin signaling induced by inflammatory stress, but it induced pancreatic β-cell apoptosis, reduced pancreatic β-cell function and enhanced hepatic gluconeogenesis, thereby resulting in hyperglycemia and glucose intolerance in casein-injected mice. Our results indicate a paradoxical effect of rapamycin on insulin resistance between the in vitro and in vivo environments under inflammatory stress and provide additional insight into the clinical application of rapamycin

    PUK7 FACTORS INFLUENCING EARLY NEPHROLOGY CARE PRIOR TO HEMODIALYSIS INITIATION AMONG ELDERLY PATIENTS WITH END-STAGE RENAL DISEASE

    Get PDF

    Heterogeneous mantle source and magma differentiation of quaternary arc-like volcanic rocks from Tengchong, SE margin of the Tibetan Plateau

    Get PDF
    The Tengchong volcanic field north of the Burma arc comprises numerous Quaternary volcanoes in the southeastern margin of the Tibetan Plateau. The volcanic rocks are grouped into four units (1-4) from the oldest to youngest. Units 1, 3 and 4 are composed of olivine trachybasalt, basaltic trachyandesite and trachyandesite, and Unit 2 consists of hornblende dacite. The rocks of Units 1, 3, and 4 form a generally alkaline suite in which the rocks plot along generally linear trends on Harker diagrams with only slight offset from unit to unit. They contain olivine phenocrysts with Fo values ranging from 65 to 85 mol% and have Cr-spinel with Cr# ranging from 23 to 35. All the rocks have chondrite-normalized REE patterns enriched in LREE and primitive mantle-normalized trace element patterns depleted in Ti, Nb and Ta, but they are rich in Th, Ti and P relative to typical arc volcanics. Despite minor crustal contamination, 87Sr/ 86Sr ratios (0.706-0.709), εNd values (-3.2 to -8.7), and εHf values (+4.8 to -6.4) indicate a highly heterogeneous mantle source. The Pb isotopic ratios of the lavas ( 206Pb/ 204Pb = 18.02-18.30) clearly show an EMI-type mantle source. The underlying mantle source was previously modified by subduction of the Neo-Tethyan oceanic and Indian continental lithosphere. The present heterogeneous mantle source is interpreted to have formed by variable additions of fluids and sediments derived from the subducted Indian Oceanic lithosphere, probably the Ninety East Ridge. Magma generation and emplacement was facilitated by transtensional NS-trending strike-slip faulting. © 2011 The Author(s).published_or_final_versionSpringer Open Choice, 28 May 201

    High-energy scale revival and giant kink in the dispersion of a cuprate superconductor

    Full text link
    In the present photoemission study of a cuprate superconductor Bi1.74Pb0.38Sr1.88CuO6+delta, we discovered a large scale dispersion of the lowest band, which unexpectedly follows the band structure calculation very well. The incoherent nature of the spectra suggests that the hopping-dominated dispersion occurs possibly with the assistance of local spin correlations. A giant kink in the dispersion is observed, and the complete self-energy containing all interaction information is extracted for a doped cuprate in the low energy region. These results recovered significant missing pieces in our current understanding of the electronic structure of cuprates.Comment: 4 pages, 3 figures, submitted to Phys. Rev. Lett. on May 21, 200

    Structural phase transition in IrTe2_2: A combined study of optical spectroscopy and band structure calculations

    Full text link
    Ir1x_{1-x}Ptx_xTe2_2 is an interesting system showing competing phenomenon between structural instability and superconductivity. Due to the large atomic numbers of Ir and Te, the spin-orbital coupling is expected to be strong in the system which may lead to nonconventional superconductivity. We grew single crystal samples of this system and investigated their electronic properties. In particular, we performed optical spectroscopic measurements, in combination with density function calculations, on the undoped compound IrTe2_2 in an effort to elucidate the origin of the structural phase transition at 280 K. The measurement revealed a dramatic reconstruction of band structure and a significant reduction of conducting carriers below the phase transition. We elaborate that the transition is not driven by the density wave type instability but caused by the crystal field effect which further splits/separates the energy levels of Te (px_x, py_y) and Te pz_z bands.Comment: 16 pages, 5 figure

    Efficient and long-lived quantum memory with cold atoms inside a ring cavity

    Full text link
    Quantum memories are regarded as one of the fundamental building blocks of linear-optical quantum computation and long-distance quantum communication. A long standing goal to realize scalable quantum information processing is to build a long-lived and efficient quantum memory. There have been significant efforts distributed towards this goal. However, either efficient but short-lived or long-lived but inefficient quantum memories have been demonstrated so far. Here we report a high-performance quantum memory in which long lifetime and high retrieval efficiency meet for the first time. By placing a ring cavity around an atomic ensemble, employing a pair of clock states, creating a long-wavelength spin wave, and arranging the setup in the gravitational direction, we realize a quantum memory with an intrinsic spin wave to photon conversion efficiency of 73(2)% together with a storage lifetime of 3.2(1) ms. This realization provides an essential tool towards scalable linear-optical quantum information processing.Comment: 6 pages, 4 figure

    Memory-built-in quantum teleportation with photonic and atomic qubits

    Full text link
    The combination of quantum teleportation and quantum memory of photonic qubits is essential for future implementations of large-scale quantum communication and measurement-based quantum computation. Both steps have been achieved separately in many proof-of-principle experiments, but the demonstration of memory-built-in teleportation of photonic qubits remains an experimental challenge. Here, we demonstrate teleportation between photonic (flying) and atomic (stationary) qubits. In our experiment, an unknown polarization state of a single photon is teleported over 7 m onto a remote atomic qubit that also serves as a quantum memory. The teleported state can be stored and successfully read out for up to 8 micro-second. Besides being of fundamental interest, teleportation between photonic and atomic qubits with the direct inclusion of a readable quantum memory represents a step towards an efficient and scalable quantum network.Comment: 19 pages 3 figures 1 tabl
    corecore